Research Update: Robotics & Recovery

Reprinted from PN/Paraplegia News December 2016

Financial boost for research project involving the use of robotics to help people living with spinal-cord injuries recover motor funtions

View Forum | Print Article | Font Size + / - | Back

A research project involving the use of robotics to help people with spinal-cord injuries (SCI) recover motor functions recently received a financial boost.

Sunil Agrawal, professor of mechanical engineering and of rehabilitation and regenerative medicine, is at the forefront of research efforts to improve recovery through the development of novel robotic devices and interfaces that help patients retrain their movements.

One of Agrawal’s current projects, Tethered Pelvic Assist Device (TPAD) and Epidural Stimulation for Recovery of Standing in Spinal-Cord Injured Patients, recently won a five-year, $5 million grant from the New York State Spinal Cord Injury Board. 

In the United States alone, there are about 300,000 people living with SCI and roughly 12,000 new SCI cases each year, most of them young adults, 80% of them men. 

The recovery of motor functions — walking, standing and balance — after SCI is slow and limited, can be highly variable and can take months or even years. 

The cost of care for SCI patients is enormous — more than $3 billion annually. Studies have shown that activity-based interventions, including Agrawal’s research, offer a promising approach.

New Approach

The TPAD project is a collaboration with co-principal investigator Susan Harkema and Claudia Angeli in the Department of Neurological Surgery at the University of Louisville in Louisville, Ky., and Joel Stein, chair of the Department of Rehabilitation and Regenerative Medicine, and Ferne Pomerantz, MD, assistant professor of rehabilitation and regenerative medicine in the Department of Rehabilitation and Regenerative Medicine, both at Columbia University Medical Center in New York City. 

Agrawal’s focus is on improving the effectiveness of stand/balance training during SCI rehabilitation by using a unique robotic system, the TPAD, invented in his Robotics and Rehabilitation Laboratory.

Harkema’s group at Louisville has pioneered the use of activity-based rehabilitation for SCI patients and, more recently, the use of epidural stimulation of the lumbosacral spinal cord during stand training of SCI subjects. 

Their results show the effectiveness of stand training of SCI patients by combining epidural stimulation and principles of motor learning. 

The group has successfully shown this strategy to work with the most severely injured individuals. 

Even though these patients are able to stand, they’re unable to maintain balance. As a result, they have difficulty in transferring this skill to the activities of daily life.

Agrawal’s TPAD is a wearable, lightweight, cable-driven robot that can be programmed to provide both motion perturbations to the pelvis as well as corrective forces to stabilize it. 

Restoring Balance

The Agrawal and Harkema groups will combine their expertise and technologies for balance training of SCI patients during standing.

“We are using this technology for the first time to enhance the effectiveness of balance recovery during stand training of SCI survivors,” says Agrawal, who has, in the past, received funding from the National Institutes of Health to work extensively on gait training of stroke survivors by designing robotic exoskeletons that can be worn by patients during training in the rehab clinics. “Robotic exoskeletons are typically designed to assist in training of human movements during the swing phase of the gait, but there are currently no robotic devices that can effectively be used for posture and balance training during standing.”

Agrawal’s TPAD consists of a pelvic belt with multiple cables connected to motors, a real-time motion capture system and a real-time controller to regulate the tensions in the cables. 

The device is programmed to provide pelvic forces in any direction and respond to motions of the human body. Its tethers can also be configured to apply symmetric or asymmetric forces on the pelvis, as needed by an intervention. 

The system design allows placement of motors and pulleys on a frame to achieve cable configurations to be able to apply corrective or perturbative forces on the pelvis in any direction — up, down or sideways.

“Our TPAD, along with its extensions, can be used in a variety of interventions during walking or standing,” says Agrawal, a member of Columbia’s Data Science Institute. “So sensory input, repetition and challenged behavior can drive the spinal networks to adapt appropriately and generate functional activation across the level of injury. This functional load-bearing and acquisition of balance can have a tremendous impact on the continued health and quality of life of individuals with SCI.”

In addition to the TPAD grant, Agrawal was honored recently by the American Society of Mechanical Engineering with its Machine Design Award for his “seminal contributions to the design of robotic exoskeletons for gait retraining of stroke patients.” 

For more information, visit

Holly Evarts is the director of strategic communications & media relations for Columbia Engineering at Columbia University in New York.   


To order the December 2016 PN, Click Here.
To Subscribe, Click Here.

Article Forum

PN Forum discussions are intended to provide a place for free-flowing exchange of information, opinions, and comments and are designed to provide an enjoyable and informative expression for all participants.
Please review our Forum Rules for complete details.

Login with username and password (Forgot Password?)
New Post

Research Update: Robotics & Recovery


Be the first to comment on this article.
(Register or login to add comments.)